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Definition to the metric graph GFF

Discrete Gaussian free field (DGFF) on Zd (d ≥ 3): a mean-zero
Gaussian field {ϕx}x∈Zd with

E (ϕx1ϕx2) = G (x1, x2), ∀x1, x2 ∈ Zd

where G (·, ·) is the Green’s function on Zd .

Metric graph Z̃d : For any adjacent points x , y ∈ Zd , let I{x ,y} be a
compact interval of length d with two endpoints identical to x and y
respectively. Then define

Z̃d :=
⋃

adjacent x ,y∈Zd

I{x ,y}.
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Definition of the metric graph GFF

Gaussian free field on the metric graph Z̃d , denoted by {ϕ̃v}v∈Z̃d , can be
obtained in the following two steps:

1 Sample a DGFF {ϕv}v∈Zd , and then set ϕ̃v = ϕv for all v ∈ Zd .

2 In each interval I{x ,y}, {ϕ̃v}v∈I{x,y} is given by an independent
Brownian bridge of length d with variance 2 at time 1, conditioned on
ϕ̃x = ϕx and ϕ̃y = ϕy .

Illustrations from Lupu-Werner’18.
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Level-set percolation

Level-set of the metric graph GFF: For any h ∈ R, let

Ẽ≥h := {v ∈ Z̃d : ϕ̃v ≥ h}.

Lupu’16: the critical level h̃∗ of Ẽ≥h is 0 for all d ≥ 3:

P
[
0

Ẽ≥h

←−→∞
]
= 0 ⇐⇒ h ≥ 0. (1)

Remark. For DGFF, Drewitz-Prévost-Rodriguez’18: h∗>0.

(1) implies that the (critical) one-arm probability

θ(N) = θ(N, d) := P
[
0

Ẽ≥0

←−→ ∂B(N)
]

N→∞−−−−→ 0.

Questions: How fast does it decay?
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Polynomial bounds for the one-arm probability

D.-Wirth’20 employed a martingale argument and proved:

When d = 3,
C1√
N
≤ θ(N) ≤ C2

√
logN

N
. (2)

When d ≥ 4,
C1(d)

N
d
2
−1
≤ θ(N) ≤ C2(d)√

N
. (3)

Remark 1: After that, Drewitz-Prévost-Rodriguez’22 proved the same
bounds for lattices with a different approach, and extended them to a large
class of transient graphs.

Remark 2: The bounds in (3) are getting rougher as d increases.
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Main result

Theorem (Cai-D.’2023)

For d > 6, there exist constants C1(d),C2(d) > 0 such that

C1N
−2 ≤ θ(N) ≤ C2N

−2. (4)

Remark: The parallel result for critical bond percolation was conjectured
to be true for d > 6, and was proved by Kozma-Nachmias’2011 under the
assumption that the two-point function

Ppc [x ←→ y ] ≍ |x − y |2−d . (5)

(5) was proved only for d ≥ 11 by Hara-Slade’90, Fitzner-van der
Hofstad’17.
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Lupu’s coupling and two-point function

Tupu’16: an explicit formula of the two-point function

P
[
x

∪L̃1/2←−−→ y
]
=

2

π
arcsin

( G (x , y)√
G (x , x)G (y , y)

)
≍ |x − y |2−d . (6)

Lupu’16: a coupling between the GFF {ϕ̃v}v∈Z̃d and the loop soup

L̃1/2 on Z̃d such that a.s.

the sign clusters of {ϕ̃v}v∈Z̃d = the loop clusters of L̃1/2. (7)

Let ∪L̃1/2 be the union of all loops in L̃1/2. (7) implies that

θ(N) =
1

2
P
[
0

sign clusters of ϕ̃←−−−−−−−−−→ ∂B(N)
]
=

1

2
P
[
0

∪L̃1/2←−−→ ∂B(N)
]
. (8)

Remark: Our proof is based on the loop soup L̃1/2.
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Proof of the lower bound: essentially by Werner

1 We abbreviate “
∪L̃1/2←−−→” as “←→”. Let X :=

∑
x∈∂B(N) 10←→x .

2 By the two-point function estimate, E(X ) ≥ cN.

3 (tree expansion) For any x , y ∈ ∂B(N), on the event
{0←→ x , 0←→ y}, there exist a loop ℓ̃ in L̃1/2 and z1, z2, z3 ∈ Zd such

that ℓ̃ intersects Bz1(1), Bz2(1) and Bz3(1), and that {z1 ←→ 0},
{z2 ←→ x}, {z3 ←→ y} happen disjointly.

4 By the van den Berg-Kesten-Reimer (BKR) inequality,

E(X 2) =
∑

x ,y∈∂B(N)

P [0←→ x , 0←→ y ]

≤C
∑

x ,y∈∂B(N)

∑
z1,z2,z3

|z1 − z2|2−d |z2 − z3|2−d |z3 − z1|2−d

· |z1|2−d |z2 − x |2−d |z3 − y |2−d

≤CN4.

(9)
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Why 6 is the critical dimension?

Triangle condition (also for the bond percolation):∑
x ,y∈Zd

P [0←→ x ]P [0←→ y ]P [x ←→ y ] <∞ ⇐⇒ d > 6.

Moreover, we need d > 6 for some technical inequalities, which are
used repeatedly in our proof (such as (9)). For example,∑
z∈Zd

|z − x |2−d |z − y |2−d ≤ C |x − y |4−d , ∀x , y ∈ Zd ⇐⇒ d > 6.

Werner’2021 conjectured that for d ∈ {3, 4, 5}, the large loop cluster
is typically formed by gluing macroscopic loops with microscopic
loops (the gluing mechanism differs according to the dimension).

Werner’2021 also presented heuristics on proving that for d > 6, the
large loop cluster is typically composed of microscopic loops.
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Proof of the upper bound 0: Gady-Nachmias framework

To obtain θ(N) ≤ CN−2 by induction, it suffices to prove that for any
sufficiently small λ, ϵ > 0 and sufficiently large N.

θ((1 + λ)N)

≤ C3

[(1 + λ)N]2+c1
+

C4

ϵ
1
2N2

+ C5ϵ
3
5N2θ(λN2 )θ(N) + (1− c2)θ(N).

In fact, {0←→ ∂B((1 + λ)N)} can be divided into four sub-events B0,
B1, B2 and B3, which correspond to the four terms on the RHS above.
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Proof of the upper bound 1: deleting large loops

Take a constant b ∈ ( 6d , 1). Define

B0 :=
{
0←→ ∂B((1 + λ)N)

}
∩
{
0

≤[(1+λ)N]b←−−−−−−→ ∂B((1 + λ)N)
}c
,

where “
≤[(1+λ)N]b←−−−−−−→” means “connected by L̃1/2 · 1diam(ℓ̃)≤[(1+λ)N]b

”.

Following Werner’s heuristics, we proved that

P [B0] ≤
C3

[(1 + λ)N]2+c1
.
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Proof of the upper bound 2: decay rate of the volume

For any v ∈ Z̃d , let C(v) be the cluster of ∪L̃1/2 containing x .

For any A ⊂ Z̃d , let |A| is the number of lattice points in A.

We define
B1 :=

{∣∣C(0)∣∣ ≥ ϵN4
}
.

Inspired by Barsky-Aizenman’1991, we proved that

P [B1] ≤
C4

ϵ
1
2N2

.
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Proof of the upper bound 3: a partial cluster as a cut set

We define a sub-cluster Ψ̂n of C(0). Roughly speaking (but not
accurate), Ψ̂n is the cluster containing 0 and composed of the loops
in L̃1/2 · 1ℓ̃∩B(n)̸=∅.

(Ψ̂n as a cut set) On the event
{
0

≤[(1+λ)N]b←−−−−−−→ ∂B((1 + λ)N)
}
, there

exists x ∈ Ψ
∗
n := Ψ̂n ∩ B(n + [(1 + λ)N]b) \ B(n − 1) such that

Bx(1) is connected to ∂B((1 + λ)N) by the loops in L̃1/2 that are not

used to construct Ψ̂n.

Let ψ∗
n := |Ψ∗

n| and L := ϵ
3
10N. We define

B2 :=
{
∃n ∈ [(1 + λ

4 ), (1 +
λ
3 )] s.t. 0 < ψ∗

n ≤ L2
}

∩
{
0

≤[(1+λ)N]b←−−−−−−→ ∂B((1 + λ)N)
}
.

⇒ P [B2] ≤C5L
2P

[
∃n ∈ [(1 + λ

4 ), (1 +
λ
3 )] s.t. 0 < ψ∗

n ≤ L2
]
θ(
λN

2
)

≤C5ϵ
3
5N2θ(λN2 )θ(N).
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Proof of the upper bound 4: regularity theorem

Let χn :=
∣∣{x ∈ B(n + L) \ B(n) : 0←→ x}

∣∣. We define

B3 :=
{
∀n ∈ [(1 + λ

4 )N, (1 +
λ
3 )N], ψ∗

n > L2
}
∩
{
|C(0)| < ϵN4

}
We need the regularity theorem (core of our proof):

P
[
ψ∗
n ≥ L2, χn ≤ c3L

4
]
≤ (1− c4)θ(N). (10)

For any i ∈ N, let ni := (1 + λ
4 )N + iL. We define

I :=
∣∣{i ∈ N : ni ∈ [(1 + λ

4 )N, (1 +
λ
3 )N], ψ∗

ni
≥ L2, χni ≤ c3L

4}
∣∣.

(10) ⇒ E(I ) ≤ 1
12λϵ

− 3
10 (1− c4)θ(N).

On
{
|C(0)| < ϵN4

}
, the number of ni with χni > c3L

4 is at most
ϵN4

c3L4
.

⇒ P [B3] ≤ P
[
I ≥ 1

12λϵ
− 3

10 − ϵN4

c3L4

]
≤ E(I )

1
12λϵ

− 3
10− ϵN4

c3L4

≤ (1− c2)θ(N).

Jian Ding (PKU) name of conference 2023.07.30 17 / 23



Proof of the upper bound 5: proportion of regular points

For any x ∈ Zd , we say x is a regular point if the sparsity of Z̃d \ Ψ̂n

in every box Bx(R) is comparable to Z̃d .

The proof of the regularity theorem is implemented in two steps:
1 Prove that with high probability a significant portion of the lattice

points in Ψ
∗
n are regular.

2 Employ the second moment method to show that in average each
regular x ∈ Ψ

∗
n may contribute O(L2) lattice points to the cluster C(0).

(P.S.
∑

y∈Bx (L)
P [x ←→ y ] ≍ L2)

Step 1 is the most challenging part due to the considerable correlation
between the regularity between different x .(key: create independence)

Our solution:
a multi-scale analysis (k-unqualified points)
b localization for the definition of regular points
c exploration process
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Proof of the upper bound 6: conclusion

The event {0←→ ∂B((1 + λ)N)} is decomposed into

B0 :=
{
0←→ ∂B((1 + λ)N)

}
∩
{
0

≤[(1+λ)N]b←−−−−−−→ ∂B((1 + λ)N)
}c
,

B1 :=
{
|C(0)| ≥ ϵN4

}
,

B2 :=
{
∃n ∈ [(1 + λ

4 ), (1 +
λ
3 )] s.t. 0 < ψ∗

n ≤ L2
}

∩
{
0

≤[(1+λ)N]b←−−−−−−→ ∂B((1 + λ)N)
}
,

B3 :=
{
∀n ∈ [(1 + λ

4 )N, (1 +
λ
3 )N], ψ∗

n > L2
}
∩
{
|C(0)| < ϵN4

}
.

Consequently, by combining the estimates for these four sub-events, we
complete the induction and obtain the desired upper bound.
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Thanks for your attention!

Questions? Remarks?
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