One-arm Exponent of Critical Level-set for Metric Graph Gaussian Free Field in High Dimensions

Jian Ding Joint work with Zhenhao Cai

School of Mathematical Science, Peking University

The 18th Workshop on Markov Process and Related Topics

Introduction

- Definition
- Background
- Main result

Proof of the main result

- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Introduction

- Definition
- Background
- Main result

Proof of the main result

- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Jian Ding (PKU)

Definition to the metric graph GFF

Jian Ding (PKU)

name of conference

₹ ≥ ► < ≥ ►</p>2023.07.30

Definition to the metric graph GFF

• Discrete Gaussian free field (DGFF) on \mathbb{Z}^d $(d \ge 3)$: a mean-zero Gaussian field $\{\phi_x\}_{x\in\mathbb{Z}^d}$ with

$$\mathbb{E}\left(\phi_{x_1}\phi_{x_2}\right) = G(x_1, x_2), \ \forall x_1, x_2 \in \mathbb{Z}^d$$

where $G(\cdot, \cdot)$ is the Green's function on \mathbb{Z}^d .

Definition to the metric graph GFF

• Discrete Gaussian free field (DGFF) on \mathbb{Z}^d $(d \ge 3)$: a mean-zero Gaussian field $\{\phi_x\}_{x\in\mathbb{Z}^d}$ with

$$\mathbb{E}\left(\phi_{x_1}\phi_{x_2}\right) = G(x_1, x_2), \ \forall x_1, x_2 \in \mathbb{Z}^d$$

where $G(\cdot, \cdot)$ is the Green's function on \mathbb{Z}^d .

Metric graph Z^d: For any adjacent points x, y ∈ Z^d, let I_{x,y} be a compact interval of length d with two endpoints identical to x and y respectively. Then define

$$\widetilde{\mathbb{Z}}^d := \bigcup_{\text{adjacent } x, y \in \mathbb{Z}^d} I_{\{x, y\}}.$$

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^d$, denoted by $\{\widetilde{\phi}_v\}_{v\in\widetilde{\mathbb{Z}}^d}$, can be obtained in the following two steps:

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^d$, denoted by $\{\widetilde{\phi}_v\}_{v\in\widetilde{\mathbb{Z}}^d}$, can be obtained in the following two steps:

③ Sample a DGFF $\{\phi_v\}_{v\in\mathbb{Z}^d}$, and then set $\widetilde{\phi}_v = \phi_v$ for all $v\in\mathbb{Z}^d$.

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^d$, denoted by $\{\widetilde{\phi}_v\}_{v\in\widetilde{\mathbb{Z}}^d}$, can be obtained in the following two steps:

- **③** Sample a DGFF $\{\phi_v\}_{v\in\mathbb{Z}^d}$, and then set $\widetilde{\phi}_v = \phi_v$ for all $v\in\mathbb{Z}^d$.
- In each interval $I_{\{x,y\}}$, $\{\widetilde{\phi}_v\}_{v \in I_{\{x,y\}}}$ is given by an independent Brownian bridge of length d with variance 2 at time 1, conditioned on $\widetilde{\phi}_x = \phi_x$ and $\widetilde{\phi}_y = \phi_y$.

Illustrations from Lupu-Werner'18.

Jian Ding (PKU)

name of conference

2023.07.30

• • • • • • • •

< ∃→

• Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$\widetilde{E}^{\geq h} := \{ v \in \widetilde{\mathbb{Z}}^d : \widetilde{\phi}_v \geq h \}.$$

Jian Ding (PKU)

Image: A matrix and a matrix

- ∢ ⊒ →

• Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$\widetilde{E}^{\geq h} := \{ v \in \widetilde{\mathbb{Z}}^d : \widetilde{\phi}_v \geq h \}.$$

• Lupu'16: the critical level \tilde{h}_* of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$\mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{\mathbf{E}}^{\geq h}}{\longleftrightarrow} \infty\Big] = \mathbf{0} \iff h \geq \mathbf{0}. \tag{1}$$

• Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$\widetilde{E}^{\geq h} := \{ v \in \widetilde{\mathbb{Z}}^d : \widetilde{\phi}_v \geq h \}.$$

• Lupu'16: the critical level \tilde{h}_* of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$\mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{\mathcal{E}}^{\geq h}}{\longleftrightarrow} \infty\Big] = \mathbf{0} \iff h \geq \mathbf{0}. \tag{1}$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: $h_*>0$.

• Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$\widetilde{E}^{\geq h} := \{ v \in \widetilde{\mathbb{Z}}^d : \widetilde{\phi}_v \geq h \}.$$

• Lupu'16: the critical level \tilde{h}_* of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$\mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{\mathbf{E}}^{\geq h}}{\longleftrightarrow} \infty\Big] = \mathbf{0} \iff h \geq \mathbf{0}. \tag{1}$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: h_{*}>0.
(1) implies that the (critical) one-arm probability

$$\theta(N) = \theta(N, d) := \mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{E}^{\geq 0}}{\longleftrightarrow} \partial B(N)\Big] \stackrel{N \to \infty}{\longrightarrow} 0.$$

• Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$\widetilde{E}^{\geq h} := \{ v \in \widetilde{\mathbb{Z}}^d : \widetilde{\phi}_v \geq h \}.$$

• Lupu'16: the critical level \tilde{h}_* of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$\mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{E}^{\geq h}}{\longleftrightarrow} \infty\Big] = \mathbf{0} \iff h \geq \mathbf{0}. \tag{1}$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: h_{*}>0.
(1) implies that the (critical) one-arm probability

$$\theta(N) = \theta(N, d) := \mathbb{P}\Big[\mathbf{0} \stackrel{\widetilde{E}^{\geq 0}}{\longleftrightarrow} \partial B(N)\Big] \xrightarrow{N \to \infty} \mathbf{0}.$$

Questions: How fast does it decay?

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

Jian Ding (PKU)

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

• When d = 3, $\frac{C_1}{\sqrt{N}} \le \theta(N) \le C_2 \sqrt{\frac{\log N}{N}}.$

(2)

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

• When d = 3, $\frac{C_1}{\sqrt{N}} \le \theta(N) \le C_2 \sqrt{\frac{\log N}{N}}.$ • When $d \ge 4$, $\frac{C_1(d)}{N^{\frac{d}{2}-1}} \le \theta(N) \le \frac{C_2(d)}{\sqrt{N}}.$

(2)

(3)

D.-Wirth'20 employed a martingale argument and proved:

• When d = 3, $\frac{C_1}{\sqrt{N}} \le \theta(N) \le C_2 \sqrt{\frac{\log N}{N}}.$

• When
$$d \ge 4$$
,

$$\frac{C_1(d)}{N^{\frac{d}{2}-1}} \le \theta(N) \le \frac{C_2(d)}{\sqrt{N}}.$$
(3)

Remark 1: After that, Drewitz-Prévost-Rodriguez'22 proved the same bounds for lattices with a different approach, and extended them to a large class of transient graphs.

(2)

D.-Wirth'20 employed a martingale argument and proved:

• When d = 3, $\frac{C_1}{\sqrt{N}} \le \theta(N) \le C_2 \sqrt{\frac{\log N}{N}}.$

• When
$$d \ge 4$$
, $\frac{C_1(d)}{N^{\frac{d}{2}-1}} \le \theta(N) \le \frac{C_2(d)}{\sqrt{N}}.$ (3)

Remark 1: After that, Drewitz-Prévost-Rodriguez'22 proved the same bounds for lattices with a different approach, and extended them to a large class of transient graphs.

Remark 2: The bounds in (3) are getting rougher as d increases.

(2)

Theorem (Cai-D.'2023)

For d > 6, there exist constants $C_1(d)$, $C_2(d) > 0$ such that

$$C_1 N^{-2} \le \theta(N) \le C_2 N^{-2}. \tag{4}$$

Jian Ding (PKU)

name of conference

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cai-D.'2023)

For d > 6, there exist constants $C_1(d), C_2(d) > 0$ such that

$$C_1 N^{-2} \le \theta(N) \le C_2 N^{-2}. \tag{4}$$

Remark: The parallel result for critical bond percolation was conjectured to be true for d > 6, and was proved by Kozma-Nachmias'2011 under the assumption that the two-point function

$$\mathbb{P}_{\rho_c}\left[x\leftrightarrow y\right] \asymp |x-y|^{2-d}.$$
(5)

Theorem (Cai-D.'2023)

For d > 6, there exist constants $C_1(d), C_2(d) > 0$ such that

$$C_1 N^{-2} \le \theta(N) \le C_2 N^{-2}. \tag{4}$$

Remark: The parallel result for critical bond percolation was conjectured to be true for d > 6, and was proved by Kozma-Nachmias'2011 under the assumption that the two-point function

$$\mathbb{P}_{\rho_c}\left[x\leftrightarrow y\right] \asymp |x-y|^{2-d}.$$
(5)

(5) was proved only for $d \ge 11$ by Hara-Slade'90, Fitzner-van der Hofstad'17.

Introduction

(2)

- Definition
- Background
- Main result

Proof of the main result

- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Jian Ding (PKU)

name of conference

2023.07.30

∃ →

< □ > < 同 >

• Tupu'16: an explicit formula of the two-point function

$$\mathbb{P}\Big[x \xleftarrow{\cup \widetilde{\mathcal{L}}_{1/2}} y\Big] = \frac{2}{\pi} \arcsin\Big(\frac{G(x, y)}{\sqrt{G(x, x)G(y, y)}}\Big) \asymp |x - y|^{2-d}.$$
 (6)

10/23

Jian Ding (PKU)

• Tupu'16: an explicit formula of the two-point function

$$\mathbb{P}\Big[x \xleftarrow{\cup \widetilde{\mathcal{L}}_{1/2}} y\Big] = \frac{2}{\pi} \arcsin\Big(\frac{G(x,y)}{\sqrt{G(x,x)G(y,y)}}\Big) \asymp |x-y|^{2-d}.$$
 (6)

• Lupu'16: a coupling between the GFF $\{\widetilde{\phi}_{v}\}_{v\in\widetilde{\mathbb{Z}}^{d}}$ and the loop soup $\widetilde{\mathcal{L}}_{1/2}$ on $\widetilde{\mathbb{Z}}^{d}$ such that a.s.

the sign clusters of
$$\{\widetilde{\phi}_{\mathsf{v}}\}_{\mathsf{v}\in\widetilde{\mathbb{Z}}^d}$$
 = the loop clusters of $\widetilde{\mathcal{L}}_{1/2}$. (7)

• Tupu'16: an explicit formula of the two-point function

$$\mathbb{P}\Big[x \xleftarrow{\cup \widetilde{\mathcal{L}}_{1/2}} y\Big] = \frac{2}{\pi} \arcsin\Big(\frac{G(x,y)}{\sqrt{G(x,x)G(y,y)}}\Big) \asymp |x-y|^{2-d}.$$
 (6)

• Lupu'16: a coupling between the GFF $\{\widetilde{\phi}_{v}\}_{v\in\widetilde{\mathbb{Z}}^{d}}$ and the loop soup $\widetilde{\mathcal{L}}_{1/2}$ on $\widetilde{\mathbb{Z}}^{d}$ such that a.s.

the sign clusters of $\{\widetilde{\phi}_{\mathbf{v}}\}_{\mathbf{v}\in\mathbb{Z}^d}$ = the loop clusters of $\widetilde{\mathcal{L}}_{1/2}$. (7)

• Let $\cup\widetilde{\mathcal{L}}_{1/2}$ be the union of all loops in $\widetilde{\mathcal{L}}_{1/2}.$ (7) implies that

$$\theta(N) = \frac{1}{2} \mathbb{P}\Big[\mathbf{0} \xleftarrow{\text{sign clusters of } \widetilde{\phi}} \partial B(N)\Big] = \frac{1}{2} \mathbb{P}\Big[\mathbf{0} \xleftarrow{\cup \widetilde{\mathcal{L}}_{1/2}} \partial B(N)\Big]. \tag{8}$$

Remark: Our proof is based on the loop soup $\mathcal{L}_{1/2}$.

Jian Ding (PKU)

Jian Ding (PKU)

name of conference

2023.07.30

Image: Image:

< ∃⇒

• We abbreviate "
$$\overset{\cup \widetilde{\mathcal{L}}_{1/2}}{\longleftrightarrow}$$
" as " \leftrightarrow ". Let $X := \sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0} \leftrightarrow x}$.

Jian Ding (PKU)

name of conference

2023.07.30

Image: A matrix and a matrix

< ∃⇒

• We abbreviate " $\overset{\cup \widetilde{\mathcal{L}}_{1/2}}{\longrightarrow}$ " as " \leftrightarrow ". Let $X := \sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0}} \leftrightarrow_x$.

2 By the two-point function estimate, $\mathbb{E}(X) \ge cN$.

Jian Ding (PKU)

name of conference

2023.07.30

We abbreviate "\(\vec{\mathcal{L}_{1/2}}\)" as "\(\low)". Let X := \sum_{x \in \delta B(N)} \mathbb{1}_0 \(\low) \low \low.\)
By the two-point function estimate, \mathbb{E}(X) \ge cN.
(tree expansion) For any x, y \in \delta B(N), on the event {\mathbf{0} \(\low x, \mathbf{0} \low y\)}, there exist a loop \$\tilde{\ell}\$ in \$\tilde{\mathcal{L}_{1/2}}\$ and \$z_1, z_2, z_3 \in \mathbb{Z}^d\$ such that \$\tilde{\ell}\$ intersects \$B_{z_1}(1)\$, \$B_{z_2}(1)\$ and \$B_{z_3}(1)\$, and that \$\{z_1 \low \mathbf{0}\}, \$\{z_2 \low x\}\$, \$\{z_3 \low y\}\$ happen disjointly.

By the van den Berg-Kesten-Reimer (BKR) inequality,

$$\mathbb{E}(X^{2}) = \sum_{x,y \in \partial B(N)} \mathbb{P}\left[\mathbf{0} \leftrightarrow x, \mathbf{0} \leftrightarrow y\right]$$

$$\leq C \sum_{x,y \in \partial B(N)} \sum_{z_{1}, z_{2}, z_{3}} |z_{1} - z_{2}|^{2-d} |z_{2} - z_{3}|^{2-d} |z_{3} - z_{1}|^{2-d} (9)$$

$$\cdot |z_{1}|^{2-d} |z_{2} - x|^{2-d} |z_{3} - y|^{2-d}$$

$$\leq CN^{4}.$$

Jian Ding (PKU)

name of conference

2023.07.30

▶ < ∃ >

• Triangle condition (also for the bond percolation):

$$\sum_{x,y\in\mathbb{Z}^d}\mathbb{P}\left[\mathbf{0}\leftrightarrow x\right]\mathbb{P}\left[\mathbf{0}\leftrightarrow y\right]\mathbb{P}\left[x\leftrightarrow y\right]<\infty\iff d>6.$$

• Triangle condition (also for the bond percolation):

$$\sum_{x,y\in\mathbb{Z}^d}\mathbb{P}\left[\mathbf{0}\longleftrightarrow x\right]\mathbb{P}\left[\mathbf{0}\longleftrightarrow y\right]\mathbb{P}\left[x\leftrightarrow y\right]<\infty\iff d>6.$$

 Moreover, we need d > 6 for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$\sum_{z\in\mathbb{Z}^d}|z-x|^{2-d}|z-y|^{2-d}\leq C|x-y|^{4-d},\;\forall x,y\in\mathbb{Z}^d\iff d>6.$$

• Triangle condition (also for the bond percolation):

$$\sum_{\mathsf{x},\mathsf{y}\in\mathbb{Z}^d}\mathbb{P}\left[\mathbf{0}\leftrightarrow\mathsf{x}\right]\mathbb{P}\left[\mathbf{0}\leftrightarrow\mathsf{y}\right]\mathbb{P}\left[\mathsf{x}\leftrightarrow\mathsf{y}\right]<\infty\iff d>6.$$

 Moreover, we need d > 6 for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$\sum_{z\in\mathbb{Z}^d}|z-x|^{2-d}|z-y|^{2-d}\leq C|x-y|^{4-d},\;\forall x,y\in\mathbb{Z}^d\iff d>6.$$

 Werner'2021 conjectured that for d ∈ {3,4,5}, the large loop cluster is typically formed by gluing macroscopic loops with microscopic loops (the gluing mechanism differs according to the dimension).

• Triangle condition (also for the bond percolation):

$$\sum_{\mathsf{x},\mathsf{y}\in\mathbb{Z}^d}\mathbb{P}\left[\mathbf{0}\leftrightarrow\mathsf{x}\right]\mathbb{P}\left[\mathbf{0}\leftrightarrow\mathsf{y}\right]\mathbb{P}\left[\mathsf{x}\leftrightarrow\mathsf{y}\right]<\infty\iff d>6.$$

 Moreover, we need d > 6 for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$\sum_{z\in\mathbb{Z}^d}|z-x|^{2-d}|z-y|^{2-d}\leq C|x-y|^{4-d},\;\forall x,y\in\mathbb{Z}^d\iff d>6.$$

- Werner'2021 conjectured that for d ∈ {3,4,5}, the large loop cluster is typically formed by gluing macroscopic loops with microscopic loops (the gluing mechanism differs according to the dimension).
- Werner'2021 also presented heuristics on proving that for d > 6, large loop cluster is typically composed of microscopic loops.

To obtain θ(N) ≤ CN⁻² by induction, it suffices to prove that for any sufficiently small λ, ε > 0 and sufficiently large N.

$$\theta((1+\lambda)N) \leq \frac{C_3}{[(1+\lambda)N]^{2+c_1}} + \frac{C_4}{\epsilon^{\frac{1}{2}}N^2} + C_5\epsilon^{\frac{3}{5}}N^2\theta(\frac{\lambda N}{2})\theta(N) + (1-c_2)\theta(N).$$

• In fact, $\{\mathbf{0} \leftrightarrow \partial B((1+\lambda)N)\}$ can be divided into four sub-events B_0 , B_1 , B_2 and B_3 , which correspond to the four terms on the RHS above.

Proof of the upper bound 1: deleting large loops

• Take a constant $b \in (\frac{6}{d}, 1)$. Define

$$\mathsf{B}_{\mathbf{0}} := \big\{ \mathbf{0} \leftrightarrow \partial B((1+\lambda)\mathsf{N}) \big\} \cap \big\{ \mathbf{0} \xleftarrow{\leq [(1+\lambda)\mathsf{N}]^b} \partial B((1+\lambda)\mathsf{N}) \big\}^c,$$

where " $\stackrel{\leftarrow}{\longleftrightarrow}$ [(1+ λ)N]^b," means "connected by $\widetilde{\mathcal{L}}_{1/2} \cdot \mathbb{1}_{\operatorname{diam}(\widetilde{\ell}) \leq [(1+\lambda)N]^{b}}$ ".

Following Werner's heuristics, we proved that

$$\mathbb{P}\left[\mathsf{B}_{0}\right] \leq \frac{C_{3}}{\left[\left(1+\lambda\right)\mathsf{N}\right]^{2+c_{1}}}$$

- For any $v \in \widetilde{\mathbb{Z}}^d$, let $\mathbf{C}(v)$ be the cluster of $\cup \widetilde{\mathcal{L}}_{1/2}$ containing x.
- For any $A \subset \widetilde{\mathbb{Z}}^d$, let |A| is the number of lattice points in A.
- We define

$$\mathbf{B}_1 := \Big\{ \big| \mathbf{C}(\mathbf{0}) \big| \ge \epsilon N^4 \Big\}.$$

Inspired by Barsky-Aizenman'1991, we proved that

$$\mathbb{P}\left[\mathsf{B}_{1}\right] \leq \frac{C_{4}}{\epsilon^{\frac{1}{2}}N^{2}}$$

Proof of the upper bound 3: a partial cluster as a cut set

- We define a sub-cluster Ψ̂_n of C(0). Roughly speaking (but not accurate), Ψ̂_n is the cluster containing 0 and composed of the loops in *L*̃_{1/2} · 1_{ℓ̃∩B(n)≠∅}.
- $(\widehat{\Psi}_n \text{ as a cut set})$ On the event $\{\mathbf{0} \xleftarrow{\leq [(1+\lambda)N]^b} \partial B((1+\lambda)N)\}$, there exists $x \in \overline{\Psi}_n^* := \widehat{\Psi}_n \cap B(n + [(1+\lambda)N]^b) \setminus B(n-1)$ such that $B_x(1)$ is connected to $\partial B((1+\lambda)N)$ by the loops in $\widetilde{\mathcal{L}}_{1/2}$ that are not used to construct $\widehat{\Psi}_n$.

• Let
$$\psi_n^*:=|\overline{\Psi}_n^*|$$
 and $L:=\epsilon^{rac{3}{10}}N.$ We define

$$\mathsf{B}_{2} := \left\{ \exists n \in [(1 + \frac{\lambda}{4}), (1 + \frac{\lambda}{3})] \text{ s.t. } 0 < \psi_{n}^{*} \leq L^{2} \right\}$$
$$\cap \left\{ \mathbf{0} \xleftarrow{\leq [(1 + \lambda)N]^{b}} \partial B((1 + \lambda)N) \right\}.$$

 $\Rightarrow \mathbb{P}[\mathsf{B}_2] \leq C_5 L^2 \mathbb{P}\left[\exists n \in [(1 + \frac{\lambda}{4}), (1 + \frac{\lambda}{3})] \text{ s.t. } 0 < \psi_n^* \leq L^2\right] \theta(\frac{\lambda N}{2})$ $\leq C_5 \epsilon^{\frac{3}{5}} N^2 \theta(\frac{\lambda N}{2}) \theta(N).$

Proof of the upper bound 4: regularity theorem

• Let
$$\chi_n := \left| \{ x \in B(n+L) \setminus B(n) : \mathbf{0} \leftrightarrow x \} \right|$$
. We define

$$\mathbf{B}_3 := \left\{ \forall n \in [(1 + \frac{\lambda}{4})N, (1 + \frac{\lambda}{3})N], \psi_n^* > L^2 \right\} \cap \left\{ |\mathbf{C}(\mathbf{0})| < \epsilon N^4 \right\}$$

• We need the regularity theorem (core of our proof):

$$\mathbb{P}\left[\psi_n^* \ge L^2, \chi_n \le c_3 L^4\right] \le (1 - c_4)\theta(N). \tag{10}$$

• For any $i \in \mathbb{N}$, let $n_i := (1 + \frac{\lambda}{4})N + iL$. We define

$$I:=\big|\{i\in\mathbb{N}:n_i\in[(1+\frac{\lambda}{4})N,(1+\frac{\lambda}{3})N],\psi_{n_i}^*\geq L^2,\chi_{n_i}\leq c_3L^4\}\big|.$$

• (10)
$$\Rightarrow \mathbb{E}(I) \leq \frac{1}{12}\lambda \epsilon^{-\frac{3}{10}}(1-c_4)\theta(N).$$

• On $\{|\mathbf{C}(\mathbf{0})| < \epsilon N^4\}$, the number of n_i with $\chi_{n_i} > c_3 L^4$ is at most $\frac{\epsilon N^4}{c_3 L^4}$.

$$\Rightarrow \mathbb{P}[\mathsf{B}_3] \le \mathbb{P}\left[I \ge \frac{1}{12}\lambda\epsilon^{-\frac{3}{10}} - \frac{\epsilon N^4}{c_3 L^4}\right] \le \frac{\mathbb{E}(I)}{\frac{1}{12}\lambda\epsilon^{-\frac{3}{10}} - \frac{\epsilon N^4}{c_3 L^4}} \le (1 - c_2)\theta(N)$$

Proof of the upper bound 5: proportion of regular points

- For any $x \in \mathbb{Z}^d$, we say x is a regular point if the sparsity of $\widetilde{\mathbb{Z}}^d \setminus \widehat{\Psi}_n$ in every box $B_x(R)$ is comparable to $\widetilde{\mathbb{Z}}^d$.
- The proof of the regularity theorem is implemented in two steps:
 - Prove that with high probability a significant portion of the lattice points in $\overline{\Psi}_n^*$ are regular.
 - 2 Employ the second moment method to show that in average each regular x ∈ Ψ_n^{*} may contribute O(L²) lattice points to the cluster C(0). (P.S. ∑_{y∈B_x(L)} ℙ[x ↔ y] ≍ L²)
- Step 1 is the most challenging part due to the considerable correlation between the regularity between different *x*.(key: create independence)
- Our solution:
 - multi-scale analysis (k-unqualified points)
 - Iocalization for the definition of regular points
 - exploration process

The event $\{\mathbf{0} \leftrightarrow \partial B((1+\lambda)N)\}$ is decomposed into

$$\begin{split} \mathsf{B}_{0} &:= \left\{ \mathbf{0} \leftrightarrow \partial B((1+\lambda)N) \right\} \cap \left\{ \mathbf{0} \xleftarrow{\leq [(1+\lambda)N]^{b}} \partial B((1+\lambda)N) \right\}^{c}, \\ \mathsf{B}_{1} &:= \left\{ |\mathsf{C}(\mathbf{0})| \geq \epsilon N^{4} \right\}, \\ \mathsf{B}_{2} &:= \left\{ \exists n \in [(1+\frac{\lambda}{4}), (1+\frac{\lambda}{3})] \text{ s.t. } \mathbf{0} < \psi_{n}^{*} \leq L^{2} \right\} \\ &\cap \left\{ \mathbf{0} \xleftarrow{\leq [(1+\lambda)N]^{b}} \partial B((1+\lambda)N) \right\}, \\ \mathsf{B}_{3} &:= \left\{ \forall n \in [(1+\frac{\lambda}{4})N, (1+\frac{\lambda}{3})N], \psi_{n}^{*} > L^{2} \right\} \cap \left\{ |\mathsf{C}(\mathbf{0})| < \epsilon N^{4} \right\}. \end{split}$$

Consequently, by combining the estimates for these four sub-events, we complete the induction and obtain the desired upper bound.

Bibliography

Lupu, T. (2016).

From loop clusters and random interlacements to the free field. *The Annals of Probability*, 44(3), 2117-2146.

Lupu, T., & Werner, W. (2018).

The random pseudo-metric on a graph defined via the zero-set of the Gaussian free field on its metric graph.

Probability Theory and Related Fields, 171, 775-818.

Drewitz, A., Prévost, A., & Rodriguez, P. F. (2018). The Sign Clusters of the Massless Gaussian Free Field Percolate on \mathbb{Z}^d , $d \ge 3$ (and more).

Communications in Mathematical Physics, 362, 513-546.

 Ding, J., & Wirth, M. (2020).
 Percolation for level-sets of Gaussian free fields on metric graphs. *The Annals of Probability*, 48(3), 1411-1435.

Bibliography

- Drewitz, A., Prévost, A., & Rodriguez, P. F. (2023).
 Critical exponents for a percolation model on transient graphs. *Inventiones mathematicae*, 232(1), 229-299.
- Kozma, G., & Nachmias, A. (2011). Arm exponents in high dimensional percolation. Journal of the American Mathematical Society, 24(2), 375-409.
- Hara, T., & Slade, G. (1990). Mean-field critical behaviour for percolation in high dimensions. Communications in Mathematical Physics, 128(2), 333-391.
- Fitzner, R., & van der Hofstad, R. (2017).
 Mean-field behavior for nearest-neighbor percolation in d > 10.
 Electronic Journal of Probability, 22(43), 1-65.

Werner, W. (2021).

On clusters of Brownian loops in *d* dimensions.

In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius, 797-817.

Barsky, D. J., & Aizenman, M. (1991). Percolation critical exponents under the triangle condition. *The Annals of Probability*, 1520-1536.

Thanks for your attention!

Questions? Remarks?

Jian Ding (PKU)

name of conference

2023.07.30