One-arm Exponent of Critical Level-set for Metric Graph Gaussian Free Field in High Dimensions

Jian Ding

Joint work with Zhenhao Cai

School of Mathematical Science, Peking University
The 18th Workshop on Markov Process and Related Topics

Table of Contents

(1) Introduction

- Definition
- Background
- Main result
(2) Proof of the main result
- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Table of Contents

(1) Introduction

- Definition
- Background
- Main result
(2) Proof of the main result
- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Definition to the metric graph GFF

Definition to the metric graph GFF

- Discrete Gaussian free field (DGFF) on $\mathbb{Z}^{d}(d \geq 3)$: a mean-zero Gaussian field $\left\{\phi_{x}\right\}_{x \in \mathbb{Z}^{d}}$ with

$$
\mathbb{E}\left(\phi_{x_{1}} \phi_{x_{2}}\right)=G\left(x_{1}, x_{2}\right), \forall x_{1}, x_{2} \in \mathbb{Z}^{d}
$$

where $G(\cdot, \cdot)$ is the Green's function on \mathbb{Z}^{d}.

Definition to the metric graph GFF

- Discrete Gaussian free field (DGFF) on $\mathbb{Z}^{d}(d \geq 3)$: a mean-zero Gaussian field $\left\{\phi_{x}\right\}_{x \in \mathbb{Z}^{d}}$ with

$$
\mathbb{E}\left(\phi_{x_{1}} \phi_{x_{2}}\right)=G\left(x_{1}, x_{2}\right), \forall x_{1}, x_{2} \in \mathbb{Z}^{d}
$$

where $G(\cdot, \cdot)$ is the Green's function on \mathbb{Z}^{d}.

- Metric graph $\widetilde{\mathbb{Z}}^{d}$: For any adjacent points $x, y \in \mathbb{Z}^{d}$, let $I_{\{x, y\}}$ be a compact interval of length d with two endpoints identical to x and y respectively. Then define

$$
\widetilde{\mathbb{Z}}^{d}:=\bigcup_{\text {adjacent } x, y \in \mathbb{Z}^{d}} I_{\{x, y\}} .
$$

Definition of the metric graph GFF

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^{d}$, denoted by $\left\{\widetilde{\phi}_{v}\right\}_{v \in \mathbb{Z}^{d}}$, can be obtained in the following two steps:

Definition of the metric graph GFF

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^{d}$, denoted by $\left\{\widetilde{\phi}_{v}\right\}_{v \in \widetilde{Z}^{d}}$, can be obtained in the following two steps:
(1) Sample a DGFF $\left\{\phi_{v}\right\}_{v \in \mathbb{Z}^{d}}$, and then set $\widetilde{\phi}_{v}=\phi_{v}$ for all $v \in \mathbb{Z}^{d}$.

Definition of the metric graph GFF

Gaussian free field on the metric graph $\widetilde{\mathbb{Z}}^{d}$, denoted by $\left\{\widetilde{\phi}_{v}\right\}_{v \in \mathbb{Z}^{d}}$, can be obtained in the following two steps:
(1) Sample a DGFF $\left\{\phi_{v}\right\}_{v \in \mathbb{Z}^{d}}$, and then set $\widetilde{\phi}_{v}=\phi_{v}$ for all $v \in \mathbb{Z}^{d}$.
(2) In each interval $I_{\{x, y\}},\left\{\widetilde{\phi}_{v}\right\}_{v \in I_{\{x, y\}}}$ is given by an independent $\underset{\sim}{B}$ Brownian bridge of length d with variance 2 at time 1, conditioned on $\widetilde{\phi}_{x}=\phi_{x}$ and $\widetilde{\phi}_{y}=\phi_{y}$.

Illustrations from Lupu-Werner'18.

Level-set percolation

Level-set percolation

- Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$
\widetilde{E}^{\geq h}:=\left\{v \in \widetilde{\mathbb{Z}}^{d}: \widetilde{\phi}_{v} \geq h\right\} .
$$

Level-set percolation

- Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$
\widetilde{E}^{\geq h}:=\left\{v \in \widetilde{\mathbb{Z}}^{d}: \widetilde{\phi}_{v} \geq h\right\} .
$$

- Lupu'16: the critical level \widetilde{h}_{*} of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$
\begin{equation*}
\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq h}{\longleftrightarrow} \infty]=0 \Longleftrightarrow h \geq 0 . \tag{1}
\end{equation*}
$$

Level-set percolation

- Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$
\widetilde{E}^{\geq h}:=\left\{v \in \widetilde{\mathbb{Z}}^{d}: \widetilde{\phi}_{v} \geq h\right\} .
$$

- Lupu'16: the critical level \widetilde{h}_{*} of $\widetilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$
\begin{equation*}
\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq h}{\longleftrightarrow} \infty]=0 \Longleftrightarrow h \geq 0 . \tag{1}
\end{equation*}
$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: $h_{*}>0$.

Level-set percolation

- Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$
\widetilde{E}^{\geq h}:=\left\{v \in \widetilde{\mathbb{Z}}^{d}: \widetilde{\phi}_{v} \geq h\right\} .
$$

- Lupu'16: the critical level \widetilde{h}_{*} of $\tilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$
\begin{equation*}
\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq h}{\longleftrightarrow} \infty]=0 \Longleftrightarrow h \geq 0 . \tag{1}
\end{equation*}
$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: $h_{*}>0$.

- (1) implies that the (critical) one-arm probability

$$
\theta(N)=\theta(N, d):=\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq 0}{\longleftrightarrow} \partial B(N)] \xrightarrow{N \rightarrow \infty} 0 .
$$

Level-set percolation

- Level-set of the metric graph GFF: For any $h \in \mathbb{R}$, let

$$
\widetilde{E}^{\geq h}:=\left\{v \in \widetilde{\mathbb{Z}}^{d}: \widetilde{\phi}_{v} \geq h\right\} .
$$

- Lupu'16: the critical level \widetilde{h}_{*} of $\widetilde{E}^{\geq h}$ is 0 for all $d \geq 3$:

$$
\begin{equation*}
\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq h}{\longleftrightarrow} \infty]=0 \Longleftrightarrow h \geq 0 . \tag{1}
\end{equation*}
$$

Remark. For DGFF, Drewitz-Prévost-Rodriguez'18: $h_{*}>0$.

- (1) implies that the (critical) one-arm probability

$$
\theta(N)=\theta(N, d):=\mathbb{P}[\mathbf{0} \stackrel{\tilde{E} \geq 0}{\longleftrightarrow} \partial B(N)] \xrightarrow{N \rightarrow \infty} 0 .
$$

Questions: How fast does it decay?

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

- When $d=3$,

$$
\begin{equation*}
\frac{C_{1}}{\sqrt{N}} \leq \theta(N) \leq C_{2} \sqrt{\frac{\log N}{N}} \tag{2}
\end{equation*}
$$

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

- When $d=3$,

$$
\begin{equation*}
\frac{C_{1}}{\sqrt{N}} \leq \theta(N) \leq C_{2} \sqrt{\frac{\log N}{N}} \tag{2}
\end{equation*}
$$

- When $d \geq 4$,

$$
\begin{equation*}
\frac{C_{1}(d)}{N^{\frac{d}{2}-1}} \leq \theta(N) \leq \frac{C_{2}(d)}{\sqrt{N}} . \tag{3}
\end{equation*}
$$

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

- When $d=3$,

$$
\begin{equation*}
\frac{C_{1}}{\sqrt{N}} \leq \theta(N) \leq C_{2} \sqrt{\frac{\log N}{N}} \tag{2}
\end{equation*}
$$

- When $d \geq 4$,

$$
\begin{equation*}
\frac{C_{1}(d)}{N^{\frac{d}{2}-1}} \leq \theta(N) \leq \frac{C_{2}(d)}{\sqrt{N}} \tag{3}
\end{equation*}
$$

Remark 1: After that, Drewitz-Prévost-Rodriguez'22 proved the same bounds for lattices with a different approach, and extended them to a large class of transient graphs.

Polynomial bounds for the one-arm probability

D.-Wirth'20 employed a martingale argument and proved:

- When $d=3$,

$$
\begin{equation*}
\frac{C_{1}}{\sqrt{N}} \leq \theta(N) \leq C_{2} \sqrt{\frac{\log N}{N}} \tag{2}
\end{equation*}
$$

- When $d \geq 4$,

$$
\begin{equation*}
\frac{C_{1}(d)}{N^{\frac{d}{2}-1}} \leq \theta(N) \leq \frac{C_{2}(d)}{\sqrt{N}} \tag{3}
\end{equation*}
$$

Remark 1: After that, Drewitz-Prévost-Rodriguez'22 proved the same bounds for lattices with a different approach, and extended them to a large class of transient graphs.

Remark 2: The bounds in (3) are getting rougher as d increases.

Main result

Theorem (Cai-D. '2023)

For $d>6$, there exist constants $C_{1}(d), C_{2}(d)>0$ such that

$$
\begin{equation*}
C_{1} N^{-2} \leq \theta(N) \leq C_{2} N^{-2} . \tag{4}
\end{equation*}
$$

Main result

Theorem (Cai-D. '2023)

For $d>6$, there exist constants $C_{1}(d), C_{2}(d)>0$ such that

$$
\begin{equation*}
C_{1} N^{-2} \leq \theta(N) \leq C_{2} N^{-2} . \tag{4}
\end{equation*}
$$

Remark: The parallel result for critical bond percolation was conjectured to be true for $d>6$, and was proved by Kozma-Nachmias'2011 under the assumption that the two-point function

$$
\begin{equation*}
\mathbb{P}_{p_{c}}[x \leftrightarrow y] \asymp|x-y|^{2-d} \tag{5}
\end{equation*}
$$

Main result

Theorem (Cai-D.' 2023)

For $d>6$, there exist constants $C_{1}(d), C_{2}(d)>0$ such that

$$
\begin{equation*}
C_{1} N^{-2} \leq \theta(N) \leq C_{2} N^{-2} \tag{4}
\end{equation*}
$$

Remark: The parallel result for critical bond percolation was conjectured to be true for $d>6$, and was proved by Kozma-Nachmias'2011 under the assumption that the two-point function

$$
\begin{equation*}
\mathbb{P}_{p_{c}}[x \leftrightarrow y] \asymp|x-y|^{2-d} \tag{5}
\end{equation*}
$$

(5) was proved only for $d \geq 11$ by Hara-Slade'90, Fitzner-van der Hofstad'17.

Table of Contents

(1) Introduction

- Definition
- Background
- Main result
(2) Proof of the main result
- Relation between the GFF and the loop soup
- Proof of the lower bound
- Proof of the upper bound

Lupu's coupling and two-point function

Lupu's coupling and two-point function

- Tupu'16: an explicit formula of the two-point function

$$
\begin{equation*}
\mathbb{P}\left[x \stackrel{\cup \widetilde{\mathcal{L}}_{1 / 2}}{\longleftrightarrow} y\right]=\frac{2}{\pi} \arcsin \left(\frac{G(x, y)}{\sqrt{G(x, x) G(y, y)}}\right) \asymp|x-y|^{2-d} \tag{6}
\end{equation*}
$$

Lupu's coupling and two-point function

- Tupu'16: an explicit formula of the two-point function

$$
\begin{equation*}
\mathbb{P}\left[x \stackrel{\cup \widetilde{\mathcal{L}}_{1 / 2}}{\longleftrightarrow} y\right]=\frac{2}{\pi} \arcsin \left(\frac{G(x, y)}{\sqrt{G(x, x) G(y, y)}}\right) \asymp|x-y|^{2-d} . \tag{6}
\end{equation*}
$$

- Lupu'16: a coupling between the GFF $\left\{\widetilde{\phi}_{v}\right\}_{v \in \widetilde{Z}^{d}}$ and the loop soup $\widetilde{\mathcal{L}}_{1 / 2}$ on $\widetilde{\mathbb{Z}}^{d}$ such that a.s.
the sign clusters of $\left\{\widetilde{\phi}_{v}\right\}_{v \in \widetilde{\mathbb{Z}}^{d}}=$ the loop clusters of $\widetilde{\mathcal{L}}_{1 / 2}$.

Lupu's coupling and two-point function

- Tupu'16: an explicit formula of the two-point function

$$
\begin{equation*}
\mathbb{P}\left[x \stackrel{\cup \tilde{\mathcal{L}}_{1 / 2}}{\longleftrightarrow} y\right]=\frac{2}{\pi} \arcsin \left(\frac{G(x, y)}{\sqrt{G(x, x) G(y, y)}}\right) \asymp|x-y|^{2-d} . \tag{6}
\end{equation*}
$$

- Lupu'16: a coupling between the GFF $\left\{\widetilde{\phi}_{v}\right\}_{v \in \widetilde{\mathbb{Z}}^{d}}$ and the loop soup $\widetilde{\mathcal{L}}_{1 / 2}$ on $\widetilde{\mathbb{Z}}^{d}$ such that a.s.
the sign clusters of $\left\{\widetilde{\phi}_{v}\right\}_{v \in \widetilde{\mathbb{Z}}^{d}}=$ the loop clusters of $\widetilde{\mathcal{L}}_{1 / 2}$.
- Let $\cup \widetilde{\mathcal{L}}_{1 / 2}$ be the union of all loops in $\widetilde{\mathcal{L}}_{1 / 2}$. (7) implies that

$$
\begin{equation*}
\theta(N)=\frac{1}{2} \mathbb{P}[\mathbf{0} \stackrel{\text { sign clusters of } \tilde{\phi}}{\longleftrightarrow} \partial B(N)]=\frac{1}{2} \mathbb{P}\left[\mathbf{0} \stackrel{U \widetilde{\mathcal{L}}_{1 / 2}}{\longleftrightarrow} \partial B(N)\right] \tag{8}
\end{equation*}
$$

Remark: Our proof is based on the loop soup $\widetilde{\mathcal{L}}_{1 / 2}$.
焐

Proof of the lower bound: essentially by Werner

Proof of the lower bound: essentially by Werner

(1) We abbreviate " $\cup \widetilde{\mathcal{L}}_{1 / 2}$ " as " \leftrightarrow ". Let $X:=\sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0} \leftrightarrow x}$.

Proof of the lower bound: essentially by Werner

(1) We abbreviate " $\cup \widetilde{\mathcal{L}}_{1 / 2}$ " as " \leftrightarrow ". Let $X:=\sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0} \leftrightarrow} \leftrightarrow x$.
(2) By the two-point function estimate, $\mathbb{E}(X) \geq c N$.

Proof of the lower bound: essentially by Werner

(1) We abbreviate " $\cup \widetilde{\mathcal{L}}_{1 / 2}$ " as " \leftrightarrow ". Let $X:=\sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0} \leftrightarrow x}$.
(2) By the two-point function estimate, $\mathbb{E}(X) \geq c N$.
(3) (tree expansion) For any $x, y \in \partial B(N)$, on the event $\{\mathbf{0} \leftrightarrow x, \mathbf{0} \leftrightarrow y\}$, there exist a loop $\widetilde{\ell}$ in $\widetilde{\mathcal{L}}_{1 / 2}$ and $z_{1}, z_{2}, z_{3} \in \mathbb{Z}^{d}$ such that $\widetilde{\ell}$ intersects $B_{z_{1}}(1), B_{z_{2}}(1)$ and $B_{z_{3}}(1)$, and that $\left\{z_{1} \leftrightarrow \mathbf{0}\right\}$, $\left\{z_{2} \leftrightarrow x\right\},\left\{z_{3} \leftrightarrow y\right\}$ happen disjointly.

Proof of the lower bound: essentially by Werner

(1) We abbreviate " $\cup \widetilde{\mathcal{L}}_{1 / 2}$ " as " \leftrightarrow ". Let $X:=\sum_{x \in \partial B(N)} \mathbb{1}_{\mathbf{0}} \leftrightarrow x$.
(2) By the two-point function estimate, $\mathbb{E}(X) \geq c N$.
(3) (tree expansion) For any $x, y \in \partial B(N)$, on the event $\{\mathbf{0} \leftrightarrow x, \mathbf{0} \leftrightarrow y\}$, there exist a loop $\widetilde{\ell}$ in $\widetilde{\mathcal{L}}_{1 / 2}$ and $z_{1}, z_{2}, z_{3} \in \mathbb{Z}^{d}$ such that $\tilde{\ell}$ intersects $B_{z_{1}}(1), B_{z_{2}}(1)$ and $B_{z_{3}}(1)$, and that $\left\{z_{1} \leftrightarrow \mathbf{0}\right\}$, $\left\{z_{2} \leftrightarrow x\right\},\left\{z_{3} \leftrightarrow y\right\}$ happen disjointly.
(9) By the van den Berg-Kesten-Reimer (BKR) inequality,

$$
\begin{aligned}
& \mathbb{E}\left(X^{2}\right)= \sum_{x, y \in \partial B(N)} \mathbb{P}[\mathbf{0} \leftrightarrow x, \mathbf{0} \leftrightarrow y] \\
& \leq C \sum_{x, y \in \partial B(N)} \sum_{z_{1}, z_{2}, z_{3}}\left|z_{1}-z_{2}\right|^{2-d}\left|z_{2}-z_{3}\right|^{2-d}\left|z_{3}-z_{1}\right|^{2-d} \\
& \cdot\left|z_{1}\right|^{2-d}\left|z_{2}-x\right|^{2-d}\left|z_{3}-y\right|^{2-d} \\
& \leq C N^{4} .
\end{aligned}
$$

Why 6 is the critical dimension?

Why 6 is the critical dimension?

- Triangle condition (also for the bond percolation):

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbb{P}[\mathbf{0} \leftrightarrow x] \mathbb{P}[\mathbf{0} \leftrightarrow y] \mathbb{P}[x \leftrightarrow y]<\infty \Longleftrightarrow d>6
$$

Why 6 is the critical dimension?

- Triangle condition (also for the bond percolation):

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbb{P}[\mathbf{0} \leftrightarrow x] \mathbb{P}[\mathbf{0} \leftrightarrow y] \mathbb{P}[x \leftrightarrow y]<\infty \Longleftrightarrow d>6
$$

- Moreover, we need $d>6$ for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$
\sum_{z \in \mathbb{Z}^{d}}|z-x|^{2-d}|z-y|^{2-d} \leq C|x-y|^{4-d}, \forall x, y \in \mathbb{Z}^{d} \Longleftrightarrow d>6
$$

Why 6 is the critical dimension?

- Triangle condition (also for the bond percolation):

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbb{P}[\mathbf{0} \leftrightarrow x] \mathbb{P}[\mathbf{0} \leftrightarrow y] \mathbb{P}[x \leftrightarrow y]<\infty \Longleftrightarrow d>6
$$

- Moreover, we need $d>6$ for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$
\sum_{z \in \mathbb{Z}^{d}}|z-x|^{2-d}|z-y|^{2-d} \leq C|x-y|^{4-d}, \forall x, y \in \mathbb{Z}^{d} \Longleftrightarrow d>6
$$

- Werner'2021 conjectured that for $d \in\{3,4,5\}$, the large loop cluster is typically formed by gluing macroscopic loops with microscopic loops (the gluing mechanism differs according to the dimension).

Why 6 is the critical dimension?

- Triangle condition (also for the bond percolation):

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbb{P}[\mathbf{0} \leftrightarrow x] \mathbb{P}[\mathbf{0} \leftrightarrow y] \mathbb{P}[x \leftrightarrow y]<\infty \Longleftrightarrow d>6
$$

- Moreover, we need $d>6$ for some technical inequalities, which are used repeatedly in our proof (such as (9)). For example,

$$
\sum_{z \in \mathbb{Z}^{d}}|z-x|^{2-d}|z-y|^{2-d} \leq C|x-y|^{4-d}, \forall x, y \in \mathbb{Z}^{d} \Longleftrightarrow d>6
$$

- Werner'2021 conjectured that for $d \in\{3,4,5\}$, the large loop cluster is typically formed by gluing macroscopic loops with microscopic loops (the gluing mechanism differs according to the dimension).
- Werner'2021 also presented heuristics on proving that for $d>6$, large loop cluster is typically composed of microscopic loops.

Proof of the upper bound 0: Gady-Nachmias framework

- To obtain $\theta(N) \leq C N^{-2}$ by induction, it suffices to prove that for any sufficiently small $\lambda, \epsilon>0$ and sufficiently large N.

$$
\begin{aligned}
& \theta((1+\lambda) N) \\
\leq & \frac{C_{3}}{[(1+\lambda) N]^{2+c_{1}}}+\frac{C_{4}}{\epsilon^{\frac{1}{2}} N^{2}}+C_{5} \epsilon^{\frac{3}{5}} N^{2} \theta\left(\frac{\lambda N}{2}\right) \theta(N)+\left(1-C_{2}\right) \theta(N) .
\end{aligned}
$$

- In fact, $\{\mathbf{0} \leftrightarrow \partial B((1+\lambda) N)\}$ can be divided into four sub-events B_{0}, B_{1}, B_{2} and B_{3}, which correspond to the four terms on the RHS above.

Proof of the upper bound 1: deleting large loops

- Take a constant $b \in\left(\frac{6}{d}, 1\right)$. Define

$$
\mathrm{B}_{0}:=\{\mathbf{0} \leftrightarrow \partial B((1+\lambda) N)\} \cap\left\{\mathbf{0} \stackrel{\leq[(1+\lambda) N]^{b}}{\longleftrightarrow} \partial B((1+\lambda) N)\right\}^{c},
$$

where " $\stackrel{\leq[(1+\lambda) N]^{b}}{\longrightarrow}$ " means "connected by $\widetilde{\mathcal{L}}_{1 / 2} \cdot \mathbb{1}_{\text {diam }(\tilde{\ell}) \leq[(1+\lambda) N]^{b}}$ ".

- Following Werner's heuristics, we proved that

$$
\mathbb{P}\left[\mathrm{B}_{0}\right] \leq \frac{C_{3}}{[(1+\lambda) N]^{2+c_{1}}}
$$

Proof of the upper bound 2: decay rate of the volume

- For any $v \in \widetilde{\mathbb{Z}}^{d}$, let $\mathbf{C}(v)$ be the cluster of $\cup \widetilde{\mathcal{L}}_{1 / 2}$ containing x.
- For any $A \subset \widetilde{\mathbb{Z}}^{d}$, let $|A|$ is the number of lattice points in A.
- We define

$$
\mathbf{B}_{1}:=\left\{|\mathbf{C}(\mathbf{0})| \geq \epsilon N^{4}\right\} .
$$

- Inspired by Barsky-Aizenman'1991, we proved that

$$
\mathbb{P}\left[\mathrm{B}_{1}\right] \leq \frac{C_{4}}{\epsilon^{\frac{1}{2}} N^{2}}
$$

Proof of the upper bound 3: a partial cluster as a cut set

- We define a sub-cluster $\widehat{\mathbf{\Psi}}_{n}$ of $\mathbf{C}(\mathbf{0})$. Roughly speaking (but not accurate), $\widehat{\mathbf{\Psi}}_{n}$ is the cluster containing $\mathbf{0}$ and composed of the loops in $\widetilde{\mathcal{L}}_{1 / 2} \cdot \mathbb{1}_{\widetilde{\ell} \cap B(n) \neq \emptyset}$.
- ($\widehat{\Psi}_{n}$ as a cut set) On the event $\left\{0 \stackrel{\leq[(1+\lambda) N]^{b}}{\stackrel{\text { b }}{ }} \partial B((1+\lambda) N)\right\}$, there exists $x \in \overline{\mathbf{\Psi}}_{n}^{*}:=\widehat{\mathbf{\Psi}}_{n} \cap B\left(n+[(1+\lambda) N]^{b}\right) \backslash B(n-1)$ such that $B_{x}(1)$ is connected to $\partial B((1+\lambda) N)$ by the loops in $\mathcal{L}_{1 / 2}$ that are not used to construct $\widehat{\mathbf{\Psi}}_{n}$.
- Let $\psi_{n}^{*}:=\left|\bar{\Psi}_{n}^{*}\right|$ and $L:=\epsilon^{\frac{3}{10}} N$. We define

$$
\begin{aligned}
\mathrm{B}_{2}:= & \left\{\exists n \in\left[\left(1+\frac{\lambda}{4}\right),\left(1+\frac{\lambda}{3}\right)\right] \text { s.t. } 0<\psi_{n}^{*} \leq L^{2}\right\} \\
& \cap\left\{\mathbf{0} \stackrel{\leq[(1+\lambda) N]^{b}}{\longleftrightarrow} \partial B((1+\lambda) N)\right\} .
\end{aligned}
$$

$\Rightarrow \mathbb{P}\left[\mathrm{B}_{2}\right] \leq C_{5} L^{2} \mathbb{P}\left[\exists n \in\left[\left(1+\frac{\lambda}{4}\right),\left(1+\frac{\lambda}{3}\right)\right]\right.$ s.t. $\left.0<\psi_{n}^{*} \leq L^{2}\right] \theta\left(\frac{\lambda N}{2}\right)$

$$
\leq C_{5} \epsilon^{\frac{3}{5}} N^{2} \theta\left(\frac{\lambda N}{2}\right) \theta(N)
$$

Proof of the upper bound 4: regularity theorem

- Let $\chi_{n}:=|\{x \in B(n+L) \backslash B(n): \mathbf{0} \leftrightarrow x\}|$. We define

$$
\mathrm{B}_{3}:=\left\{\forall n \in\left[\left(1+\frac{\lambda}{4}\right) N,\left(1+\frac{\lambda}{3}\right) N\right], \psi_{n}^{*}>L^{2}\right\} \cap\left\{|\mathbf{C}(\mathbf{0})|<\epsilon N^{4}\right\}
$$

- We need the regularity theorem (core of our proof):

$$
\begin{equation*}
\mathbb{P}\left[\psi_{n}^{*} \geq L^{2}, \chi_{n} \leq c_{3} L^{4}\right] \leq\left(1-c_{4}\right) \theta(N) \tag{10}
\end{equation*}
$$

- For any $i \in \mathbb{N}$, let $n_{i}:=\left(1+\frac{\lambda}{4}\right) N+i L$. We define

$$
I:=\left|\left\{i \in \mathbb{N}: n_{i} \in\left[\left(1+\frac{\lambda}{4}\right) N,\left(1+\frac{\lambda}{3}\right) N\right], \psi_{n_{i}}^{*} \geq L^{2}, \chi_{n_{i}} \leq c_{3} L^{4}\right\}\right| .
$$

- $(10) \Rightarrow \mathbb{E}(I) \leq \frac{1}{12} \lambda \epsilon^{-\frac{3}{10}}\left(1-c_{4}\right) \theta(N)$.
- On $\left\{|\mathbf{C}(\mathbf{0})|<\epsilon N^{4}\right\}$, the number of n_{i} with $\chi_{n_{i}}>c_{3} L^{4}$ is at most $\frac{\epsilon N^{4}}{c_{3} L^{4}}$.
$\Rightarrow \mathbb{P}\left[\mathrm{B}_{3}\right] \leq \mathbb{P}\left[I \geq \frac{1}{12} \lambda \epsilon^{-\frac{3}{10}}-\frac{\epsilon N^{4}}{c_{3} L^{4}}\right] \leq \frac{\mathbb{E}(I)}{\frac{1}{12} \lambda \epsilon^{-\frac{3}{10}}-\frac{\epsilon N^{4}}{c_{3} L^{4}}} \leq\left(1-c_{2}\right) \theta(N)$
三

Proof of the upper bound 5: proportion of regular points

- For any $x \in \mathbb{Z}^{d}$, we say x is a regular point if the sparsity of $\widetilde{\mathbb{Z}}^{d} \backslash \widehat{\Psi}_{n}$ in every box $B_{x}(R)$ is comparable to $\widetilde{\mathbb{Z}}^{d}$.
- The proof of the regularity theorem is implemented in two steps:
(1) Prove that with high probability a significant portion of the lattice points in $\bar{\Psi}_{n}^{*}$ are regular.
(2) Employ the second moment method to show that in average each regular $x \in \overline{\mathbf{\Psi}}_{n}^{*}$ may contribute $O\left(L^{2}\right)$ lattice points to the cluster $\mathbf{C}(\mathbf{0})$. (P.S. $\left.\sum_{y \in B_{x}(L)} \mathbb{P}[x \leftrightarrow y] \asymp L^{2}\right)$
- Step 1 is the most challenging part due to the considerable correlation between the regularity between different x.(key: create independence)
- Our solution:
((multi-scale analysis (k-unqualified points)
(b) localization for the definition of regular points
© exploration process

Proof of the upper bound 6: conclusion

The event $\{\mathbf{0} \leftrightarrow \partial B((1+\lambda) N)\}$ is decomposed into

$$
\begin{aligned}
\mathrm{B}_{0}:= & \{\mathbf{0} \leftrightarrow \partial B((1+\lambda) N)\} \cap\left\{\mathbf{0} \stackrel{\leq[(1+\lambda) N]^{b}}{\longleftrightarrow} \partial B((1+\lambda) N)\right\}^{c}, \\
\mathbf{B}_{1}:= & \left\{|\mathbf{C}(\mathbf{0})| \geq \epsilon N^{4}\right\}, \\
\mathrm{B}_{2}:= & \left\{\exists n \in\left[\left(1+\frac{\lambda}{4}\right),\left(1+\frac{\lambda}{3}\right)\right] \text { s.t. } 0<\psi_{n}^{*} \leq L^{2}\right\} \\
& \cap\left\{\mathbf{0} \stackrel{\leq[(1+\lambda) N]^{b}}{\longrightarrow} \partial B((1+\lambda) N)\right\}, \\
\mathrm{B}_{3}:= & \left\{\forall n \in\left[\left(1+\frac{\lambda}{4}\right) N,\left(1+\frac{\lambda}{3}\right) N\right], \psi_{n}^{*}>L^{2}\right\} \cap\left\{|\mathbf{C}(\mathbf{0})|<\epsilon N^{4}\right\} .
\end{aligned}
$$

Consequently, by combining the estimates for these four sub-events, we complete the induction and obtain the desired upper bound.

Bibliography

Rupu，T．（2016）．
From loop clusters and random interlacements to the free field．
The Annals of Probability，44（3），2117－2146．
嗇 Lupu，T．，\＆Werner，W．（2018）．
The random pseudo－metric on a graph defined via the zero－set of the Gaussian free field on its metric graph．
Probability Theory and Related Fields，171，775－818．
（i）Drewitz，A．，Prévost，A．，\＆Rodriguez，P．F．（2018）．
The Sign Clusters of the Massless Gaussian Free Field Percolate on $\mathbb{Z}^{d}, d \geq 3$（and more）．
Communications in Mathematical Physics，362，513－546．
固 Ding，J．，\＆Wirth，M．（2020）．
Percolation for level－sets of Gaussian free fields on metric graphs． The Annals of Probability，48（3），1411－1435．

Bibliography

（1）Drewitz，A．，Prévost，A．，\＆Rodriguez，P．F．（2023）．
Critical exponents for a percolation model on transient graphs． Inventiones mathematicae，232（1），229－299．

目 Kozma，G．，\＆Nachmias，A．（2011）．
Arm exponents in high dimensional percolation．
Journal of the American Mathematical Society，24（2），375－409．
雷 Hara，T．，\＆Slade，G．（1990）．
Mean－field critical behaviour for percolation in high dimensions． Communications in Mathematical Physics，128（2），333－391．

目 Fitzner，R．，\＆van der Hofstad，R．（2017）．
Mean－field behavior for nearest－neighbor percolation in $d>10$ ． Electronic Journal of Probability，22（43），1－65．

Bibliography

目 Werner, W. (2021).
On clusters of Brownian loops in d dimensions.
In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius, 797-817.
Barsky, D. J., \& Aizenman, M. (1991).
Percolation critical exponents under the triangle condition.
The Annals of Probability, 1520-1536.

Thanks for your attention!

Questions? Remarks?

